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Abstract

I went to the gym today, but how well did I do? And

where should I improve? Ah, my back hurts slightly... User

engagement can be sustained and injuries avoided by being

able to reconstruct 3d human pose and motion, relate it to

good training practices, identify errors, and provide early,

real-time feedback. In this paper we introduce the first au-

tomatic system, AIFit, that performs 3d human sensing for

fitness training. The system can be used at home, outdoors,

or at the gym. AIFit is able to reconstruct 3d human pose,

shape, and motion, reliably segment exercise repetitions,

and identify in real-time the deviations between standards

learnt from trainers, and the execution of a trainee. As

a result, localized, quantitative feedback for correct exe-

cution of exercises, reduced risk of injury, and continuous

improvement is possible. To support research and evalua-

tion, we introduce the first large scale dataset, Fit3D, con-

taining over 3 million images and corresponding 3d human

shape and motion capture ground truth configurations, with

over 37 repeated exercises, covering all the major muscle

groups, performed by instructors and trainees. Our statisti-

cal coach is governed by a global parameter that captures

how critical it should be of a trainee’s performance. This

is an important aspect that helps adapt to a student’s level

of fitness (i.e. beginner vs. advanced vs. expert), or to the

expected accuracy of a 3d pose reconstruction method. We

show that, for different values of the global parameter, our

feedback system based on 3d pose estimates achieves good

accuracy compared to the one based on ground-truth mo-

tion capture. Our statistical coach offers feedback in nat-

ural language, and with spatio-temporal visual grounding.

1. Introduction

In nowadays busy, high pressure working environments,

fitness is essential in order to stay in shape, maintain bal-

ance, enhance the immune system, and prevent the emer-

gence of chronic diseases. It is also critical for the elderly in

order to maintain mobility, combat anxiety, and slow-down

aging. This has increasingly resonated with the broad pub-

lic. Besides the growing number of standard gym subscrip-

tions, there are emergent online services (e.g. Peloton, Mir-

ror or ClassPass, among others) that aim to bring fitness at

home. Some trainers run popular Youtube fitness channels

or apps (e.g. Athlean-X, The Fitness Marshall, Blogilates,

etc.), and public interest spurs billions of searches and views

of such instructional video each year. However, whether at

the gym, at home, or outdoors, fitness enthusiasts face some

of the same outstanding challenges: making sure they exer-

cise correctly, avoid injury, gain insights into their progress,

maintain motivation to get the job done, and ultimately have

fun. Even when personal trainers are available, their en-

gagement is typically limited to the time spent with the

trainee at the gym. In practice, personal trainers may need

to joggle between different clients, making it difficult to

provide the continuous observation, feedback, and encour-

agement their clients sometimes need in order to progress.

This naturally raises the question whether personal experi-

ence can be improved by leveraging recent advances in 3d

human sensing and AI. To complement human trainers, in

this paper we propose AIFit, the first AI-enhanced training

system for fitness. The system is able to reconstruct 3d hu-

man pose over time, count repetitions, and automatically

provide localized feedback, visually grounded in images of

the trainee, and phrased in natural language displayed on

a screen. In order to support research and evaluation, we

introduce Fit3D, a large-scale dataset of over 3 million im-

ages and ground truth 3d motion capture poses, collected

from 13 subjects (including one licensed fitness instructor

and one advanced fitness subject), observed by 4 different

RGB cameras, together with 3d scans of each subject. The

dataset features 37 exercises consisting of simple and com-

pound motions, covering all major muscle groups and ar-

ticulation types, including, among many others, warm-ups,
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barbells, dumbbells, push-ups, or yoga.

Our proposed methodology includes large-scale monoc-

ular and multi-view evaluation of 3d human pose recon-

struction for fitness training using Fit3D, models for auto-

matic identification of exercise repetitions, as well as meth-

ods to compare instructors’ and trainees’ performances ac-

cording to statistical policies defined over mined features

(passive and active) defining the exercise, and carrying most

of its motion energy. Our statistical coach is governed by a

global parameter ranging between 0 and 1 that models how

critical it is in regard to a student’s performance: 0 - very

critical, 1 - very relaxed. In practice, the parameter helps

the coach adapt to a student’s level of fitness (i.e. beginner

vs advanced vs expert) or to the expected accuracy of the

underlying 3d pose reconstruction method. We show that,

for different values of this parameter, our feedback system

based on 3d pose estimates achieves high accuracy when

compared to one based on ground-truth motion capture 3d

poses. Finally and importantly, our statistical coach pro-

vides easy to understand, visually grounded spatio-temporal

feedback, in natural language. A system overview is shown

in fig. 1.

2. Related Work

Visual human sensing has been extensively studied[24,

17, 16, 36, 22, 18, 37, 38, 14, 31, 3, 12, 7, 8]. Applications

exist in many domains such as automotive industry [21, 25],

fashion industry [9, 30], activity recognition [28] and many

others. One particular area which was less considered by

research is reconstruction and activity analysis for fitness

training, as also addressed in this work.

AI Fitness Training It has been well established [15, 1,

23, 19, 32] that fitness and exercising have a high impact on

the physical and mental health of humans, motivating the

need for methodologies and scientific studies to evaluate the

correctness of physical exercises and to provide feedback.

Several prior studies focus on this topic, but lack a de-

tailed 3d (temporal) analysis in terms of all major body

joints and muscle groups, as well as feedback. Most pre-

vious work [11, 27, 39, 2] operates on real-time sensory

data collected e.g. from IMUs or Microsoft Kinect [29].

[27] uses a wearable IMU device to monitor leg activity and

posture, and generates a report at the end of each day. [2]

introduce a dataset of physical activities captured using Mi-

crosoft Kinect. However, these are limited to basic motions

such as walking, up-and-go and step exercises, without a

broader coverage of motions and muscle groups.

Other methods operate directly on raw RGB images,

without the use of additional sensors. [34] proposes a fit-

ness feedback method based on SMPL model fitting. Given

a single frame from a fitness exercise, the subject’s fitted

SMPL body shape is compared to a correct reference shape.

This approach neither operates in the temporal domain nor

does it provide interpretable feedback. [33] proposes a deep

learning framework trained on annotated data, which pre-

dicts 2d human body poses in outdoor sport videos, asso-

ciates them temporally, and provides training suggestions

for incorrect poses. Since the analysis is performed in 2d

(as opposed to 3d), precise feedback is not always possible.

Repetition Segmentation Segmenting a video into repe-

tition intervals is a well-studied problem. It is usually ap-

plied to class-agnostic actions and is split into periodicity

detection (determining if a frame is part of a repeating ac-

tion or not) and repetition counting (predicting the count

number of an action in a video). Differently from previ-

ous work, our approach offers a precise segmentation of

each repetition in a video, without any particular assump-

tion on the actual length of each interval. Several methods

have been proposed, exploiting auto-correlation [5] or tak-

ing use of optical flow features under Wavelet transforms

[26]. More recently, two methods [13, 6] introduce deep

learning models that directly predict the period of a repe-

tition. Several class-agnostic video repetition datasets are

also introduced: QUVA [26] for repetition counting, PER-

TUBE [20] for periodicity detection and Countix [6] for

both tasks. Note that, as opposed to Fit3D, Countix does

not contain the bounds of each repetition interval, but only

the bounds of the periodic subsequence and its repetition

count.

3. Fit3D Dataset

To assist fitness training and to stimulate research in the

area, we record a 3d motion capture dataset featuring 13
human subjects performing fitness exercises. Among them,

there is one licensed fitness instructor (considered the ref-

erence for correctness in exercise execution), while the rest

are considered trainees of various levels of skill.

We use a VICON motion capture system consisting of 12

motion cameras, synchronized with 4 RGB cameras. The

capture process involves reflective markers which are af-

fixed to either the subject’s skin or clothing. All subjects

are dressed in gym-like attires which usually fit tightly on

the body. During the recordings, the subjects use several

typical gym objects: 2 dumbbells, a barbell, and a rubber

band. A low-height, footless table is used to ease the diffi-

culty of the exercises involving lifting the barbell.

The fitness exercises target the major body muscle

groups: arms, legs, back and abdomen. We split them

into two groups: simple (involving basic repetitions such

as push-up, squat or dumbbell biceps raise) and compound

(assuming more complex routines involving multiple body

regions, such as burpees, entailing a push-up and a jump, or

clean and press, assuming certain trajectories of the arms).

Each subject is asked to perform each type of exercise for a

minimum of 5 repetitions.
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Figure 1. AIFit overview. Given a video of a trainee performing an exercise, (a) the system performs 3d pose reconstruction in each

frame and then (b) applies repetition segmentation to automatically count the number of 3d pose repetitions and determine each repetition

interval. Next, exercise modelling (c) computes an exercise signature using the angular features of each repetition of the trainee (see

fig. 3 for a detailed view). (d) The statistical coach compares each repetition signature against the instructor reference signature under a

critic threshold that allows for different degree of error. The results of the comparison are populated into a reference assessment table

specifying which deviations are greater than the critic threshold, the sign of the deviation and the degree of error. Finally, based on the

table, e) AIFit produces natural language feedback for the trainee, using either an active or a passive grammar.

The subject height varies between 1.55-1.9m and the

weight between 60-110kg, the dataset covering a mix of

fit subjects (persons who exert a high degree of physical

activity) as well as less trained ones. Fit3D consists of

2, 964, 236 unique MOCAP 3d skeletons synchronized with

RGB images. Each skeleton is also accompanied by the

GHUM [35] human body model parameters, obtained by

fitting the body model to the markers. Each subject is also

3d scanned (please see our Sup. Mat. for examples). We

split the dataset into training and validation (10 subjects -

2, 278, 572 images), and testing (3 subjects - 685, 664 im-

ages), with all exercise types available in both subsets. In

addition, we manually segment each video into repetitions,

annotating a total of 2, 964 timestamps. We define the sub-

set of recordings for the trainees as Trainees3D and the sub-

set of recordings for the instructor as Reference3D.

4. Methodology

Our proposed automatic system for fitness training

(AIFit) takes as input a video of a person performing fitness

exercises and outputs human-interpretable language feed-

back. The main components of the system execute the fol-

lowing tasks: a) 3d pose estimation to compute angular fea-

tures; b) segmentation of the 3d pose sequence into indi-

vidual repetitions; c) an exercise modelling extracts angular

features and applies statistical operators in order to obtain

an exercise signature for each of the repetitions; d) statisti-

cal coach identifies errors in exercise signatures with respect

to a precomputed exercise signature of an instructor, and e)

provides natural language feedback with visual grounding.

An overview of our methodology is shown in fig. 1.

4.1. Segmentation of Repetitions

Given a sequence of N frames of a given routine, our

goal is to extract the temporal intervals T = {Ti|Ti =
[ti, ti+1], i = 1, 2, . . . , k} corresponding to all k repetitions

of the given exercise. We propose using estimated 3d poses

in each frame P = {p1, p2, . . . , pN} as an intermediate rep-

resentation of the motion. Our method should be robust to

the quality of 3d poses, to the motion variation in each repe-

tition and to the number of repetitions each subject chooses

to execute (we assume a minimum of kmin repetitions, i.e.,

k ≥ kmin). We introduce a two-stage algorithm, where we

first assume the length of the repetitions within a video is

fixed, and then use this estimate as an initialization for re-

finement using constrained continuous optimization.

Initialization. To obtain a first estimate of the segmenta-

tion, we assume a fixed-period of the pose signal, Tinit =
T (tstart, τ) = {Ti|ti = tstart +(i− 1)τ}, where τ is a period

and tstart represents the starting point of the repetitions. We

define the affinity between two 3d poses A(pm, pn) as the

negative mean per joint position error (MPJPE) between the

pm and pn poses. To determine τ∗, the initial estimate of

the period, we define the auto-correlation of the signal as:

RPP (τ, s) =
1

N − 2s− τ

N−s−τ∑

t=s

A(pt, pt+τ ) (1)

where s is the size by which the signal is shrunk at both

ends, to account for noisy components not part of any rep-

etition (in theory, one could use two s values, one for each

end, but in practice we didn’t notice significant differences).

We iterate over s and then τ and select the first period τ∗ of

the signal to be the smallest τ for which RPP (τ, s) reaches
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Figure 2. (Left) Example of the effect of each equation in the repetition segmentation algorithm. (Top Right) Example of sampling a fixed

number of 4 timestamps from Ti using U . (Bottom Right) Affinity computation between two intervals Ti and Tj , as described in eq. 3.

a local maximum point. The corresponding s for this local

maximum is s∗. In short, τ∗ is the period that maximizes

the auto-correlation of the signal, where noise outside repe-

titions is taken into account.

Once the period τ∗ is estimated, we search for the be-

ginning of the first repetition tstart maximizing the average

affinity Aavg of T (tstart, τ
∗), which we define as:

Aavg(T ) =
1

k2min

kmin∑

i=1

kmin∑

j=1

Aseq(Ti, Tj) (2)

where:

Aseq(Ti, Tj) =
1

τ∗

τ∗∑

l=1

A(pti+l, ptj+l) (3)

Eq. 3 computes the similarity between two repetitions of

equal period τ∗ (intervals Ti and Tj), as shown in fig. 2

bottom right. Eq. 2 averages similarities between all pos-

sible pairs of intervals, being a global affinity of the repe-

tition segmentation T , parameterized at this stage only by

tstart, since τ∗ is already found in eq. 1. We select t∗start as

the smallest value for which Aavg(T (tstart, τ
∗)) has a local

maximum, as it provides the highest similarity between rep-

etitions. We select the smallest such maximum to prevent

solutions such as the beginning of the 2nd/3rd/etc. interval,

which are also local maxima.

Optimization. Next, we drop the fixed period assumption

and use T (t∗start, τ
∗) = {T ∗

i |t
∗
i = t∗start + (i − 1)τ∗} as ini-

tialization for a nonlinear constraint optimization in the T

domain.

In order to compare any two intervals (of possible differ-

ent lengths), we need to uniformly sample the same num-

ber of frames from each interval. The function U(Ti, nS)
does this, by simply uniformly collecting nS continuous

frame coordinates between the start and end frame of an

interval Ti. For an e.g., please see fig. 2 top right, where,

when sampling 4 frames from the interval [15, 19] consist-

ing of 5 frames (in black), we obtain: U([15, 19], 4) =
{15, 16.33, 17.66, 19} (in red). The pose at a non-discrete

timestamp is obtained via linear interpolation p̂x = p⌊x⌋ ·
(1 − (x − ⌊x⌋)) + p⌈x⌉ · (x − ⌊x⌋). This allows gen-

eralizing eq. 3 to the case where T is parametrized by

ti, i = 1, 2, . . . , kmin:

Âseq(Ti, Tj) =
1

nS

∑

u∈U(Ti,nS)
v∈U(Tj ,nS)

A(p̂u, p̂v) (4)

and derive Âavg(T ) from eq. 2 by replacing Aseq(Ti, Tj)

with Âseq(Ti, Tj).

Our objective becomes maximizing Âavg(T ) over ti, i =
1, 2, . . . , kmin, with the following constraints:

ti+1 − ti > δ for i = 1, 2, . . . , kmin and a small δ (5)

to ensure we do not obtain a trivial solution due to the sim-

ilarity of 3d poses in consecutive frames and

|tkmin+1 − t∗kmin+1| < τ∗ (6)

to ensure the solution we find does not overlap with possible

subsequent repetitions (beyond kmin).

Note that due to the general MPJPE distance function

we use to define pose affinity, our method generalizes to

any type of physical exercise and no hand-crafted features

need to be designed for particular motions. The choice of

hyper-parameters nS and δ is validated on the training set.

4.2. Exercise Modelling

The input to our AIFit system is an untrimmed sequence

of 3d poses of a trainee performing an exercise. We apply

the temporal repetition detector in §4.1 to segment the se-

quence into individual units. The aim is to provide visual

and textual feedback on the correctness of the exercise that

is easy to interpret by the trainee, so that errors can be eas-

ily understood and corrected. We decide to use only angular

features as they are robust to a person’s scale, build (i.e. dif-

ferent bone lengths) and global orientation. A general set of

angular feature functions is defined around the major artic-

ulations of the human body. In fig. 4 we show examples

for a few angular feature signals computed on two exer-

cises performed by both a trainee and the instructor. On

the top, we illustrate the spine angle during a squat exer-

cise. Ideally, as can be seen for the instructor, it should be

kept straight (i.e. around π), with minimal jitter during the
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Figure 3. Exercise Modelling: (Left) Active and passive angular feature sets construction (instructor only). For an exercise a and for

each angular feature function, we integrate its motion trajectory over the instructor’s sequence of 3d poses, and get the motion energy of

each feature function. We cluster the energies into two sets, active Θ
a
+ (associated with high energy) and passive Θ

a
−

(associated with

low energy) by using a maximum margin binary cut. (Right) Exercise signature computation. Both for trainees and instructor exercises,

a signature is produced from the computed angular features, corresponding cluster assignments (derived from instructor exercises) and

predefined statistical operators (applied to each of the two sets of angular features).

Figure 4. Measurement differences between a trainee and the in-

structor. (Top) For a squat exercise we measure the angle formed

by the pelvis, mid-spine and neck. Ideally, it should be π (180◦,

straight line). The instructor performance comes close to that

value. (Bottom) For a lateral dumbbell raise exercise we measure

the angle between the upper arms and the spine. Ideally, the angle

phase between left and right should be the same (see the instruc-

tor performance) and the movement frequency should be constant

throughout the exercise (the trainee movement is more uneven).

exercise. However, it is clearly noticeable that the trainee

does not manage to keep their back straight. Furthermore,

the spine bends synchronously with the repetitions of the

squat. On the bottom side of fig. 4, we analyze a dumbbell

lateral rise exercise. We measure the angle at the left and

right shoulders between elbow articulations and the spine,

for both the instructor and trainee. It can be observed that

the instructor has a nearly perfect phase angle with almost

constant frequency for both his arms, whereas the trainee

has chaotic arm movement. Such measurements offer us

insight for the design of the proposed methodology.

We make the observation that, for a given fitness exer-

cise, a low number of features define the motion, whereas

the others are kept constant. We propose to automatically

detect the two different categories of features, which we

call active and passive, given instructor’s demonstrations.

As the two categories also entail different types of signal

statistics, we therefore create separate distinct policies with

corresponding signal operators (e.g. ’mean’ angle) that ag-

gregate over the temporal domain.

Angular Features. We use angular features to capture the

motion statistics of the most important kinematic limb joints

– knees, elbows, shoulders – and the spine. For the kine-

matic limb joints we compute several types of angular fea-

tures: articulation angle (between the two limbs connect-

ing to the child and parent joints in the kinematic tree), an-

gle between the parent limb and the ’Up’/’Right’/’Forward’

axes. The ’Up’ axis is always considered to be the y axis,

the ’Right’ axis is given by the orientation of the shoulder

joints, and the ’Forward’ axis is constructed as the cross-

product of the ’Up’ and ’Right’ axes. By defining the co-

ordinate axes this way, we ensure that features are invariant

to the global rotation of the human subject. For the spine,

we only use the articulation angle. This feature is used to

determine how straight the back is, an important aspect in

many fitness routines. We denote the angular feature set

Θ = {θi}i=1...Nθ
, with Nθ the total number of angular fea-

tures.

Construction of Active and Passive Feature Sets. For a

given exercise a ∈ A, where A is the set of all exercises,

we are interested in partitioning the set of feature functions

Θ in two subsets: the active set Θa
+ and the passive set Θa

−.

Intuitively, the former includes the features that define the

motion of the exercise (i.e. carry most of the energy; e.g.

knees bending in a squat) and the latter includes all the other

features (i.e. carry the least energy; e.g. back kept straight).

We use the 3d motion of the instructor P a
I =

(p1, . . . , pN ) as reference for an exercise a. We compute

the response for each different feature function over the se-
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quence, θi(P a
I ) = (θi(p1), . . . , θ

i(pN )), with θi ∈ Θ. We

define the energy of feature function θi as:

ei =

N−1∑

j=1

|θi(pj+1)− θi(pj)| (7)

We sort the energies {e}i=1...Nf
and find the cut with the

largest margin separating them in two clusters – of high

and low energy, respectively – and automatically gather the

corresponding final feature function sets Θa
+ and Θa

−. An

overview of this process is shown in fig. 3 (left).

Exercise Signature Computation. In order to compare be-

tween trainee and instructor exercise routines, we propose

to model them by an exercise signature (see fig. 3 (right)).

First, for each type of feature function set (active Θa
+ or

passive Θa
−), we consider different statistical operators O.

We compute all the feature function responses on all the de-

tected repetitions in a sequence and temporally aggregate

responses in each repetition window using different oper-

ators, as follows: for the active feature functions we use

Ou
+(θ

i) = {′max′,′ min′} as unary aggregation operators

and Op
+(θ

i, θj) = {′correlation′} as the pairwise aggre-

gation operator, where θi, θj ∈ Θa
+; for the passive feature

functions we consider just the unary aggregation operators

Ou
−(θ

i) = {′mean′,′ std′}, where θi ∈ Θa
−. The unary

operators are chosen to reflect the periodic nature of the ac-

tive features and the stationary nature of the passive fea-

tures. The pairwise operator for the active features reflects

the correlation between angles in a synchronized exercise

(e.g. both knees follow the same movement in a squat).

The output of these operators on the angular features is the

exercise signature and we denote it by Sa.

4.3. Statistical Coach

Given a repetition of an exercise routine by a trainee, we

compute its signature. This trainee signature, S, is com-

pared against a precomputed reference signature, Sreference,

of the instructor from the Reference3D subset of our dataset.

For each pair of entries in the signatures, if the absolute dif-

ference is larger than a threshold we consider it as an er-

roneous execution and also retain the sign of the difference

(i.e. lower, higher or equal). The thresholds are set such

that they account for the worst performing trainee seen in

the Trainees3D subset of our dataset. All thresholds used

are further scaled by a global parameter δ, with values be-

tween 0 and 1, that models the system’s sensitivity to errors

and can be interpreted as feedback of the statistical coach

(the ‘critic’) on the accuracy of the exercise execution. The

statistical coach populates a reference assessment table that

is further used to generate textual feedback.

4.4. Natural Language Feedback

AIFit provides human-interpretable visual and textual

feedback for each repetition of an exercise routine. For the

Listing 1. Production rules for the active (top) and passive

(bottom) grammars.

You <verb> your <noun> t o o <adv1> [ t o t h e <adv2>] by

<numeral> d e g r e e s .

<verb> := lower | r a i s e | e x t e n d | bend |move

<noun> := { j o i n t s }
<adv1> := much | l i t t l e

<adv2> := f r o n t | back | r i g h t | l e f t

You s h o u l d keep your <noun> <adj
2
> | (<adv1> (<adj

1
>|<adv2> ) ) .

<noun> := { j o i n t s }
<adj

2
> := h i g h e r | l ower | s t i l l | s t r a i g h t

<adv1> := more | l e s s

<adj
1
> := e x t e n d e d | b e n t

<adv2> := t o t h e r i g h t | t o t h e l e f t

textual output, we use two different grammars, one provid-

ing feedback for the active angles and one for the passive

angles (see production rules in listing 1). The non-terminals

are dependent on the type of error, feature and aggregation

operators. For each identified error in the trainee routine we

also provide a visual output: an image where the error oc-

curs and the corresponding reference image of the instructor

showing the correct execution.

5. Experiments

We learn and validate all of our components on the train-

ing set of Fit3D and report results on the test set.

3D Pose Reconstruction. For experiments, we use either

the ground-truth 3d pose reconstruction or the predicted

3d pose reconstructions. For the latter, we adapt a state-

of-the-art 3d pose reconstruction network MubyNet[38],

which was pre-trained on the Human3.6M[10], a large-

scale 3d dataset capturing everyday activities. We define

its variants as follows: MubyNet-SV – single view recon-

struction, MubyNet-MV – multi-view view reconstruction,

while MubyNet-{*}-FT denote the fine-tuned versions of

the network trained on Fit3D for 5 epochs. For the multi-

view reconstruction, we first run MubyNet in all available

cameras. Next, we transform all the 3d pose reconstructions

from camera space to world space (assuming known camera

parameters) and apply a median operation to obtain a single

3d pose reconstruction estimate. In table 1 we show the re-

construction errors for the different variants considered on

the test split of Fit3D. Both fine-tuned variants achieve sig-

nificantly lower reconstruction errors compared to the orig-

inal ones, and the multi-view approaches are also consis-

tently better than single view ones. We also test against

SPIN[12] another state-of-the-art 3d pose and shape recon-

struction method. The errors are on a par with MubyNet

but higher than our fine-tuned methods. This shows that our

proposed Fit3D dataset covers novel 3d poses, that are out-

side the distribution of current 3d pose datasets used in the

literature, such as Human3.6M.

Segmentation of Repetitions. We validate and test our
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w/o Procrustes w. Procrustes

Method SV MV SV MV

SPIN 89.5 67.6 61.0 50.7

MubyNet 90.4 71.9 67.7 57.9

MubyNet-FT 52.4 45.4 41.1 35.7

Table 1. MPJPE errors (in mm) of different reconstruction meth-

ods, with/without Procrustes Alignment. Multi-view (MV) ver-

sions consistently outperform the single-view (SV), while fine-

tuned ones (FT) outperform their regular counterparts.

MubyNet

Input GT joints SV MV SV-FT MV-FT

Acc. 0.731 0.661 0.690 0.708 0.730

Table 2. Accuracy (IoU) performance for temporal segmentation

of an exercise into repetitions, shown by using both ground-truth

and estimated 3d input joints. Segmentation accuracy increases

with the quality of the input poses. It saturates for the MubyNet-

MV-FT predictions, where the performance is similar to that ob-

tained using GT poses.

repetition segmentation method on sequences from Fit3D,

using the annotated timestamps. We validate the hyper-

parameters of the method on the training set using the

ground truth 3d joints as input and report the performance

of the method on the 3 subjects in the test set. Here we

set kmin = 5 as the minimum number of repetitions exe-

cuted (and annotated) in a video. Since we are interested in

repetition segmentation, we use the intersection-over-union

(IoU) to measure the accuracy of segmentation, averaged

over all kmin repetitions of the test sequences.

Table 2 shows the performance of our repetition segmen-

tation method using as input 3d pose sequences obtained

from different reconstruction methods or the ground truth.

As expected, the accuracy of our repetition segmentation

method is positively correlated with that of the 3d pose es-

timation method MubyNet used to generate the input of the

method (the smaller the reconstruction error, the better the

segmentation accuracy of repetitions). Yet, when the re-

construction error is not so high (as in MubyNet-MV-FT),

the repetition segmentation method performs on a par with

using ground truth 3d poses (0.730 vs. 0.731 IoU), which

proves the system’s robustness to variation in input quality.

Repetition Counting. Although designed for fine-grained

repetition segmentation, we also evaluate our repetition al-

gorithm on the task of repetition counting (only estimating

the period with which an action is repeated in a video, not

the extent of each repetition unit). Our approach requires

that the repetition is performed by a human, so we restrict

our evaluation only to these types of videos. We report

results on our Fit3D dataset and a subset of the Countix

dataset [6] which we call CountixFitness. This subset is

selected to consist of only videos of humans performing fit-

ness exercises (e.g. ’front raises’, ’lunge’, ’jumping jacks’,

’pull ups’, ’push up’, ’rope pushdown’). CountixFitness is a

subset of only the train and validation set of Countix, since

the test set does not contain action tags which we require

to filter out actions not involving humans. The protocol in

the literature assumes input videos are fully-periodic, so we

trim both datasets to be periodic from start to end.

We set kmin = 2 and use the initial period τ∗ obtained

with the MubyNet SV-FT 3d pose representation as the

AIFit estimated period. The number of counts is obtained

by dividing the length of the video to the period and round-

ing it up. We also evaluate RepNet [6] on both datasets and

report the two existing evaluation metrics used in the liter-

ature: the Off-By-One (OBO) error (the misclassification

rate, where a video is classified correctly if the predicted

count is within one count of the ground-truth) and the Mean

Absolute Error (MAE) of count (where the absolute error is

the absolute count difference between the ground truth and

prediction, normalized by ground truth count). Results are

computed on the 3 subjects in the Fit3D test set (444 videos)

and on the CountixFitness validation set (267 videos).

Fit3D CountixFitness

Dataset OBO ↓ MAE ↓ OBO ↓ MAE ↓

RepNet 0.520 0.740 0.292 0.468

AIFit 0.140 0.253 0.292 0.604

Table 3. Comparison of RepNet and our AIFit on the Fit3D and

CountixFitness datasets.

Table 3 compares our method with RepNet on the two

datasets. On Fit3D, AIFit significantly outperforms Rep-

Net, while on CountixFitness the two algorithms perform

similarly, with AIFit drifting a little more than RepNet when

being wrong. Note that while RepNet is trained directly

for repetition counting on the entire in-the-wild Countix

dataset, our AIFit approach generalizes well on all datasets,

but specializes on human actions. This is because our ap-

proach does not require any training and can easily be inte-

grated on top of any existing 3d pose reconstruction method.

We also experiment with using an alternative representation

of the person in each frame. Instead of the 3d pose, we

use the estimated 2d pose predicted using [4]. To define the

dissimilarity measure between two 2d poses, we compute

the Euclidean distances between corresponding keypoints,

weight them by the product of their confidences and aver-

age them. Our results confirm that 3d pose is a stronger

representation than the 2d pose, both in terms of the OBO

error (0.140 vs. 0.920) and MAE (2.250 vs. 0.253).

Active and Passive Features. We conduct an ablation

study to measure the similarity (IoU score) between the per-

formances of the instructor and each of the trainees, in terms

of mined active feature sets. We illustrate this study in fig. 5.

AIFit Feedback. In fig. 7 we provide quantitative anal-

ysis of the the AiFit feedback ablating over the different

variants of 3d pose estimation methods (MubyNet) on the
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Figure 5. IoU score for active features between each of the twelve

trainees and the instructor, for simple fitness exercises (left) and

compound ones (right). I t can be clearly noticed that for com-

pound exercise types, there are less common active features among

the trainee and instructor. Also, for the simplest of exercises (i.e.

squat, push-up, dumbbell biceps curls) we get the highest number

of common active features between trainee and instructor.

Trainees3D subset. We consider the feedback of AIFit com-

puted over the ground-truth 3d poses as the reference and

compare against the feedback of AIFit using all other 3d

pose reconstruction methods. We pose it as a classifica-

tion problem, as feedback can be seen as a multi-class la-

beling (e.g. higher, lower, same) for different aggregation

operators and feature types. We vary the global parameter

controlling the system’s sensitivity to errors, δ, from more

restrictive to more permissive. A higher accuracy at higher

critic thresholds is expected, as in this case the inaccura-

cies of the pose estimation methods have less impact on the

feedback outcome. The more accurate 3d pose estimation

methods also have lower reconstruction errors (table 1). At

a critic threshold of δ = 0.5, the feedback obtained with 3d

pose estimation methods achieves around 80% accuracy for

both active and passive policies. We also show examples of

textual and visual feedback for different trainees exercising

outdoors (fig. 6).

6. Conclusions

We have introduced AIFit, the first 3d human sensing-

based automatic system for fitness training, together with

Fit3D, a large-scale dataset of over 3 million images and

corresponding 3d human shape and motion capture ground

truth configurations, featuring 37 repeated exercises that

cover all the major muscle groups, performed by certified

trainers and trainees with different skill levels. AIFit is able

to reconstruct 3d human pose and motion, reliably segment

repetitions, mine critical active and passive features of the

exercise, and identify deviations between correct execution

models learnt from trainers, and the work of the trainee, in

real-time. A statistical coach provides localized, quantita-

tive feedback, in order to exercise correctly, reduce the risk

of injury, and sustain continuous improvement. The sta-

tistical coach can operate over both a relaxed and a high-

intensity training intensity regime, provides feedback in

natural language, and with spatio-temporal visual ground-

Figure 6. Textual and visual feedback produced by our AIFit on

real world videos, captured with a regular smartphone camera. We

use MubyNet-FT to estimate the 3d pose of the trainee. For each

example, we show the following: an image with the identified er-

ror of the trainee (top row), the 3d reconstruction of the trainee

(second row), the corresponding image with the correct execu-

tion of the instructor (third row) and the textual feedback (bottom

row). The two examples on the (left) show active features feed-

back, while the two on the (right) show passive features feedback.

Notice generalization to various humans in different environments

and camera viewpoints. Please see Sup. Mat. for videos!

Figure 7. Accuracy at different critic thresholds when comparing

the feedback produced by AIFit based on ground truth 3d poses

against 3d poses estimated with different variants of MubyNet. We

show the accuracy computed on active (left) and passive (right)

feedback policies. For higher critic thresholds (more permissive

system), the accuracy increases, as fewer errors are being reported.

ing in trainee’s execution, making it useful as an ubiquitous

complement to less frequently available human trainers at

the gym, outdoors, or at home. Models will be made avail-

able for research.1
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